Available online at www.sciencedirect.com

. . JOURNAL OF
ScienceDirect SOUND AND
VIBRATION

ELSEVIE Journal of Sound and Vibration 318 (2008) 1024—1049

www.elsevier.com/locate/jsvi

Scattering of plane wave by circular-arc alluvial valley
in a poroelastic half-space

Xiang-Lian Zhou®, Ling-Fa Jiang®, Jian-Hua Wang**

“Department of Civil Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
®Institute of Rock and Soil Mechanics, The Chinese Academy of Science, Wuhan 430071, China

Received 4 July 2007; received in revised form 25 December 2007; accepted 27 April 2008
Handling Editor: L.G. Tham
Available online 24 June 2008

Abstract

Based on the complex variable function method, a new approach for solving the scattering of plane P wave by circular-
arc alluvial valley in poroelastic half-space is developed in the paper. In this analysis, the poroelastic half-space and the
circular-arc valley are modeled as poroelastic medium based on Biot’s dynamic theory. By introducing three potentials, the
governing equations for Biot’s theory are reduced to three Helmholtz equations. The series solutions of the Helmholtz
equations are obtained by the wave function expansion method. Here, the large circle assumption is applied to simulate the
boundary conditions at the half-space boundary. The stresses and pore pressures are obtained by using the boundary
conditions and continuous conditions of the poroelastic half-space and the circular-arc alluvial valley. Numerical results
show that the dynamic stresses concentration and pore pressures concentration are mainly relative to the wave shape of
incidence, angle of incidence, dimensionless frequency of incident wave, stiffness and pore ratio of the poroelastic half-
space and valley.
© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The analysis of the scattering of elastic waves by finite sized, surface irregularities including canyons,
alluvial valleys and sedimentary basins is of great importance for civil engineering and earthquake
engineering.

The scattering of elastic waves by cavities have been studied for a very long time. The most important
contributions of which are summarized in the two well-known works [1,2]. There are many kinds of analytical
and numerical methods that can be used to solve the dynamics response of cavities in elastic half-space. For
example, Gamer [3] used wave function expansion method to study dynamic stress concentration factor at the
surface of a semi-circular cavity in an elastic half-space. Bard and Bouchon [4,5] studied alluvial valleys by
using discrete wavenumber approximations. Zeng and Cakmak [6] used series expansion method to investigate
the scattering of SH waves by multiple cavities in both an infinite and a half-space. Davis et al. [7] used
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Fourier—Bessel series to investigate the transverse response of underground cylindrical cavities to incident
shear waves. Sancar and Pao [8] gave solutions for the scattering of plane harmonic pressure waves by two
cylindrical cavities by using eigenfunction expansion methods. Datta et al. [9] used combined finite element
method and eigenfunction expansions method to study dynamic stresses and displacements around cylindrical
cavities of various shapes in elastic medium. Also, there are methods based on the boundary element method
[10-14]. For example, Moeen-Vaziri and Trifunac [15] used the boundary method to solve the problem of
scattering and diffraction of SH waves by cylindrical canals of arbitrary shape in an elastic half-space.

However, the research concerning the scattering of elastic waves by cavities has been mainly restricted to the
elastic case. For saturated porous medium, several scholars also have addressed the scattering of elastic waves
by embedded cavities. For example, Mei et al. [16] introduced boundary layer approximation to study the
scattering of P and SV waves by a circular cavity of arbitrary radius in a poroelastic medium. Norris [17]
obtained the solution for a point load in an unbounded fluid saturated porous solid. Krutin et al. [18] solved
the problem of elastic harmonic wave by a fluid filled cylindrical cavity embedded in saturated medium.
Zimmerman [19] used boundary element method to study the problem of wave diffraction by a spherical
cavity in an infinite poroelastic medium. Hu et al. [20] used Biot’s theory to study the scattering and refraction
of plane strain wave by a cylindrical cavity in a fluid saturated soil. Kumar et al. [21,22] obtained general
solution of an anisotropic saturated poroelastic medium by using the Fourier transform and eigenvalue
approach. Liang et al. [23] used wave function expansion method to obtain an analytical solution for the
scattering of incident plane SV wave by a shallow circular-arc canyon in a saturated half-space. Kattis et al.
[24] used boundary element method to solve the problem of P and SV waves by tunnel in an infinite poroelastic
saturated soil. Wang et al. [25] used potential function and complex function to solve the problem of the
scattering of plane wave by multiple elliptic cavities in saturated soil medium. Li et al. [26] obtained an
analytical solution for scattering and diffraction of P wave by circular-arc alluvial valley with shallow
saturated soil deposit. Hasheminejad and Avazmohammadi [27] investigated the dynamic response of plane
wave with a pair of parallel circular cylindrical cavities buried in a boundless porous medium.

The purpose of the present study is to develop a new method for addressing the scattering of elastic wave by
circular-arc alluvial valley in poroelastic half-space. The poroelastic medium is described by Biot’s theory
[28,29]. By introducing three potentials, the governing equations for Biot’s theory are decoupled and reduced
to three Helmholtz equations satisfied by three potentials. The series solutions for the Helmholtz equations are
obtained by wave function expansion method. To illustrate the result, the effects of wave shape of incidence,
angle of incidence, dimensionless frequency of incident P wave, stiffness and pore ratio of the poroelastic
half-space and alluvial valley are studied. The methodology and analytical solution developed in this paper
may provide a new method for further analysis of the scattering of transient wave by the irregular topography
condition in a finite half-space.

2. Governing equations

The model involves circular-arc alluvial valley overlying a poroelastic half-space. Suppose the origin of the
circular-arc alluvial valley is oy, inner radius is 74, outer radius is r, and depth is d; (see Fig. 1). The poroelastic
half-space and circular-arc alluvial valley are described by Biot’s theory. The constitutive equations for
homogeneous poroelastic medium can be expressed as [28,29]

oy = 2pey + Adje — 0dyp, (1a)
py = —aMe+ M3 (1b)

e =u; (1o

= —wi; (1d)

where o;; denotes the stress of bulk material; ¢; and e are the strain component and the dilatation of the solid
skeleton, respectively; 4, u represent Lamé constants; J;; denotes the Kronecker delta; § denotes the variation
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Fig. 1. Model of circular-arc alluvial valley in poroelastic half-space.

of fluid content per unit reference volume; o, M are Biot parameters; p,is the pore pressure; u; and w; denote
the average solid displacement and the fluid displacement relative to the solid frame.
The equations of motion for the poroelastic medium are expressed in terms of the displacement u, and w; as

patip + (A 0P M+ i + aMw; i = pity + prwvi (2a)
O(Muj:/‘,' + MW/'J,‘ = pfu, + m1'1'/,~ + %W,‘ (2b)

where p, p, denote the bulk density of the poroelastic medium and the density of the pore fluid,
p = (1—-n)p,+npys, ps is the density of the solid skeleton and 7 is the porosity of the poroelastic medium;
m = a,,psn and a, is tortuosity; n, k represent the viscosity and the permeability of the poroelastic medium,
respectively; a superimposed dot on a variable denotes the derivative with respect to time.

In order to decouple the equations of motion for the poroelastic medium, two scalar potentials ¢ ¢, and
one vector potential \ are introduced to express the displacement and the pore pressure. The displacement and
the pore pressure are expressed by the potentials in the following form [19]:

up=@;+ eV, = ¢op; + @ + ey (3a)

Py = Aros i+ Aspy i (3b)

where 4,and A, are two constants to be determined by the governing equations of Biot’s theory; e;; denotes
the Levi—Civita symbol. »
When considering the time harmonic vibration of frequency w by the term e '*’, where i = +/—1, for
—iwt :

brevity, the term e is suppressed henceforth from all expressions in the sequel. Substituting Egs. (1b), (3a)
and (3b) into Eq. (2a), the following formula is obtained:

(4 +2u = BoAp) sy + Baprlii + [(A + 21 — BrAs) @y + B3@sli + €amlplyy j; + B3], = 0 4)

In order to satisfy Eq. (4), the expressions in braces should be equal to zero independently. Thus, Eq. (4) can
be written in the following form:

(A4 2u = BrAr)s;; + Bpy =0 (5a)
()V + 2m — ﬁ2AA\‘)qu,jj + ﬁ3qDS =0 (Sb)
.u\l!zjj + B3 =0 (5¢)

where

By = po® + ,0_%004//))13 By =0+ waz/ﬁl, B = —mo’ —inw/k (6)
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Substituting Eq. (1b) into Eq. (2b) leads to

Pri —PrBi/M — (B + pro)ui; =0 (N
Then, substituting Eq. (3) into Eq. (7) yields
[Aros i+ BsAr — Bosly + [As@s i + (BsAs — Byl =0 )
In order to satisfy Eq. (8), the expressions in braces should be equal to zero independently. Thus, one has
Arr i+ (BsAr — By =0 (9a)
Aspy i + (BsAs — By, =0 (9b)
Ba=ap + PfCU2 %¢)
Bs=—B/M (9d)

From Egs. (5a), (5b) and (9a), (9b), one has

By — (4 + 215 — BrBa (4 + 2By
A%+ Aps+——"""=0 (10)
7 BaBs B2Bs
From Egs. (5) and (9), each component ¢, and \ must satisfy Helmholtz equations of the following form:
Vo, + ki, =0 (11a)
V2o, + ko, =0 (11b)
VA + iy =0 (11c)
If introducing
ki = B3/ G421 = Brdy) = (BsAy — Ba)/ Ay (12a)
I; = B3/ (+ 21 — BrAy) = (BsAs — Ba)/As (12b)
k= Bs/u (12¢)

where kg k, k, are the complex wavenumbers associated with the fast wave, slow wave, and shear wave,
respectively. In order to guarantee the attenuation of the body waves, Im(ky), Im(k;), Im(k,) should be non-
positive. Also, since the speed of the fast wave is larger than that of the slow wave, as the result, the inequality
Re(k) <Re(ky) should always hold.

If introducing complex variables z = x + iy, Z = x — iy, the general solutions of Eq. (11) can be expressed in
terms of Hankel function

S anH<”(kf|z|)< ) (13a)

n=—00

Z buH (ks |z|)( ) (13b)
v=> C,1H(”(kz|2|)( ) (130)

where H,(*) denotes the first kind of Hankel function of order n; a,, b,, ¢, are arbitrary coefficients to be
determined by the boundary conditions.
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3. Total waves of poroelastic half-space and alluvial valley

To solve the boundary conditions at the half-space boundary, the large circle assumption is applied in this
work. That is the half-space boundary is approximated as a nearly flat circular boundary centered at o, with a
radius r, > ry (Fig. 2). The curved surface of the large circle is then used as an approximation of the flat surface
of the infinite half-space. It is now obvious that when the radius of the large circle approaches infinity this
model approaches that of the circular-arc alluvial valley in the half-space. In this paper, r, = 100r; to insure
displacements on the curved surface approaches accurately enough to those of a flat surface in the free field.
Convergence of the solutions for various large ratios are tested.

For the scattering of elastic wave by circular-arc alluvial valley with an infinite poroelastic, the total wave
field of poroelastic half-space is composed of the incident wave, the reflected wave and the scattered wave [24]

ol = ol) + o) + of) + o) (14a)
o) = o) + o) + o) + 0 (14b)
v = (140)

By introducing complex variables, the incident plane harmonic waves can be expressed as

o = o exo{ % [z (<i5 - 1)) + 2 exn(i(5 - 1)) ] s
o) = o0 exp{ 5 [z exp(<i(5 - ) +z e (15 - 1))} (15b)
0= el e (-5 -3)) +=ew(i(5-1) 150

where B, fo, y are the incident angles of the incident harmonic waves, respectively; @i, @10, W10 are the
amplitude ratios of the three incident waves.

If there is no alluvial valley, the incident wave reflected from the half-space will generate a reflected wave to
satisfy the stress free boundary conditions. The reflected wave are expressed as

(pg’f) = A, exp kz [ exp(i(g - /3/)) +z exp(—i(g - ﬁ/)ﬂ (16a)
Y2
> X5 B
Y]
I3 4,

Fig. 2. Approximate model of circular-arc alluvial valley in poroelastic half-space.
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) ik[s (T , _ (T ,
o1, = A> exp—- [z exp (1 (E — ﬁ0>) +z exp<—1(§ — 50))} (16b)

0 = 43 expik% {z exp(i(g - ’)) +z exp(—i(g - y’))} (16c)

where 4, A,, A5 are the amplitude ratios; f’, 'y, 7 are the reflected angles, respectively.
The amplitude ratios 4, 4, and A3 are obtained by the straight boundary conditions of poroelastic half-
space. Based on the law of Snell, these reflected angles can be expressed as

ki sin p" = ki sin fy = ky, sin y’ (17)

In the half-space, because of the presence of both the plane free boundary and the circular-arc alluvial
valley, the incident P wave and the reflected P and S waves from the ground surface will be scattered around
the valley in the half-space, and the total potentials of harmonic plane P and S waves generated at the valley
are represented by (p,ﬁ‘), o5 and Y. The scattered cylindrical waves from the valley will be reflected back
into the half-space from the plane free surface. The cylinder vibrations are reflected off the half-space free
surface generating new waves represented by ¢z $. 9.8 and V5.

W=+ =3 S apt (kf|zl,|>(| |) (182)

i=1 n=—00

W =00 =3" 3 b HO, |z,,|)(| J|) (18b)
i=1 n=—o00 Zj

W= =3 3 g (k,|zy|>(| |) (180
i=1 n=—o00 Zjj

where z; = z—d; (j = 1,2), d; (j = 1,2) is the complex coordinate between the origin of jth circle and the origin
of total coordinate system.
For the alluvial valley, the total wave field is composed of the refracted wave and the scattered wave

‘/’ﬁ} q)IIf + (/’(\) + (P(\) (19a)
ot = o) + 0 + ol (19b)
D=+ 0+ (19¢)
where
n=+oo z n
w%’f} = Z di,HY )(k11/|2,1|)( U|> (20a)
n=—co Zjj
n=+00 z n
ot = Z e Y (kns|ZU|)(|ZU|> (20b)
n=—co i
n
W = Z Sl (kIIt|sz|)( |) (20c)
n=—0oo
n=+o00 n
on=> dZnH(l)(kIIf|Zz]|)< ) (20d)
n=—00 /
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: n=+o0o z;
o = Y etttz () (200)
n=—00 Zjj
n=-4o00 n
W= fuH )(knr|2u|)(| |) (200
n=—00 Zij
n=-+o00 n
o= duH) (kn,|zl,|)( ) (209)
n=-+o0o n
o= e (km|z,,|)(| U|) (20h)
n=-+o00 n
=Y ratentz () (20i)
n=—o00 Zij

where z;; = z—d; (j = 3,4), d; (j = 3,4) is the complex coordinate between the origin of jth circle and the origin
of total coordmate system.

4. The expressions of stresses, pore pressures and displacements of poroelastic half-space

If introducing complex variables z = x+iy, Z = x — iy, the expressions of stresses, pore pressures and
displacements of poroelastic half-space can be expressed as

. 0 . .

uy, + iy = 26—2_(9052 + (p%? 1\|1§t)) exp(—1i6) (21a)
—iugy = 2—(<p‘” o 4+ 1l”) exp(i0) (21b)

' o, W W _ 0 -
Wi + 1w = 26—2_(’711(P1f + M@y, — lanyy’) exp(—ib) (2lc)
wy — iwgg = 2 (7711(/’1f + ’7129015 + 1oc11;0 7Y exp(i0) (21d)
o1 + 019 = =201 + ) (ki 0\ + Kol (2le)
o1 + o1 = a1l + om0, + a2 = (q)(’) o) — i\ exp(—2i0) 210

4 (f) (t) o (1) 2i0 21

— oy = OCI/(PIf + o) + #Ia 2((0 @1y + 1Y) exp(2i0) (21g)
= —Ayk}o\) — Ay h o) 21h
Py = 11Ky ¢If s/ s Prs (21h)

where

oyp = O‘IAIfk%f — (A1 + :ul)k%]% o = o Aisky, — (o + ki, = om — OCIZAIfk%f»
Plfw 1

, op=—— (22)
Bu Bu

In all manipulations, a subscript I is used to denote the parameters of poroelastic half-space.

2
Np = oq — apdky, on =
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5. The expressions of stresses, pore pressures and displacements of alluvial valley

If introducing complex variables z = x+iy, Z = x — iy, the expressions of stresses, pore pressures and
displacements of alluvial valley can be expressed as

e+ i = 2. (ol + 0ff, — 147 exp(—i) (23a)
uny — iy = 2—(<p§;} Pir, + 117 exp(id) (23b)
e 0 = 2 O oy s, — ioan W) exp(—i0) (23¢)
wiy —iwng = 2 (nlll(Pl]j + ’7112‘/’115 + io‘lll"’i?) exp(if) (23d)
oy + om0 = —20n + ) (kg pyry + ki) (23¢)
0 0 o’
oy + o9 = oty Py + s Pryy + Ay Y (<P11f + </9§?A llll(')) exp(—2i0) (230)
o = 01100 = oy @iy + sy, + At 5 ol + o+ i) expzi (239)
Py = —Awkiy ol — Auskiy i, (23h)

where
oy = OCHAkaﬁf — (A + /lu)k%lf, oty = o Auskyy, — O + )k Mg = % — OCIIZAIIfk%U"

Puy 1
M = ot — ot Auskiy, o = o2 = — o (24)
ﬁnl P

In all manipulations, a subscript II is used to denote the parameters of alluvial valley.

6. The boundary value problems

The boundary conditions of this problem include the continuous conditions at the interface between the
valley and the half-space, and the zero stress at the free ground surface within the valley and the half-space out
of the valley. The continuous conditions at the interface can be written as

o1 — o190 = 011, — 10110 (252)
o1 + oy = oy + oy (25b)
uy — iuyg = uy, — ung (25¢)
uy + iy = uny + upg (25d)
wr — iwgg = wir, — W (25¢e)
wr + iwgg = wir + iwne (251)

The zero stress boundary conditions at the free ground surface within the half-space out of the valley can be
expressed as

oy — o9 =0 (26a)
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o1 +iopg =0 (26b)
For permeable boundary condition of half-space, the pore pressure should vanish
Py = —Aykief) — Ak ol =0 27)

For impermeable boundary condition of half-space, the normal displacement of the fluid relative to the
solid skeleton should vanish

Wiy %wu+mw-ﬂw%%wm®+ywwv+mw — iou i) exp(—if) = 0 (28)
The zero stress boundary conditions at the free ground surface within the alluvial valley can be expressed as
oy —iomg =0 (29a)
oy +iomg =0 (29b)

For permeable boundary condition of alluvial valley, the pore pressure should vanish
puy = —Awy k%lfqoﬁ} - AHSk%Isq)g?s =0 (30)

For impermeable boundary condition of alluvial valley, the normal displacement of the fluid relative to the
solid skeleton should vanish

wiy = (’11119011f + ’7112(/’11& + 106111%1)) exp(if)

+§mm%;+%wm—mmﬁbmmamzo (31

Applying the continuous conditions at the interface between the valley and half-space, and the boundary
conditions at the free surface within the valley and half-space out of the valley, substituting the resulted
potential functions of the half-space and alluvial valley into above equations, the constants ay,,, b1, Cins don,
by Cons dins €1ns fins ons €2 fons dans €3n, f3, can be determined. It should be pointed out that the above
equations are all in infinite sums, therefore, the system of equations must be solved by truncating the infinite
terms into the finite terms. The number of terms included in the calculation is 12 to reach the required
accuracy. The solution courses of (25-31) are given in detail in Appendix A.

7. Numerical results and discussions

Dynamic stress concentration factor ¢ is defined as the ratio of the tangential effective stress along the
boundary of the cavity to the normal effective stress
(1) Outer boundary of alluvial valley
6/
of = (32)

/
0o

where

ot = — G+ m)kiol, + w%—mamﬁ+wﬁw%wmm

M%QW% o1 — iWi}) exp(=2i0) — aapyy (33a)
oy = —(li + 2.“1)k12f901fo — WPy (33b)

(2) Inner boundary of alluvial valley

oy = Zuo (34)
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where

ope = —2(Zu + :ull)(k%lf(pﬁ}' + ki @$0) — enpyy (35)

For the case of impermeable condition, the pore pressure concentration factor is defined as

Pr
pt=" (36)
Pro

where

Pro = —Arki; s 37)

In this paper, a semi-analytical solution has been developed for the scattering of plane wave by circular-arc
alluvial valley in poroelastic half-space. The effects of frequency, angle of incidence, porosity, and thickness of
alluvial valley on the dynamic response will be discussed.

The material parameters for the poroelastic half-space are: p;; = 2750 kg/m3; p1y= 1000 kg/m3; np = 0.45;
= 2.6x 107 Pa; v; =0.3; oy =0.999; M;=1.0x10%Pa; 5 =1.0x10">Pas; ks =1.0x10""m/s. The
material parameters for the alluvial valley are: py, = 2500 kg/m?>; puy= 1000 kg/m®; ny=0.5; py = 1.5 %
107 Pa; vy = 0.25; oy = 0.999; My; = 1.0 x 10° Pa; iy = 1.0 x 1072 Pas; kg = 1.0 x 1079 m/s. Figs. 3-8 show
the distributions of dynamic stresses concentration and pore pressures concentration around the outer and the
inner boundary of circular-arc alluvial valley for incidence angle f = 0°, 30° and thickness of alluvial valley
rq/r1 = 0.8, 0.7. As shown in Figs. 3-8, the stresses and pore pressures amplitudes increase with the increase of
frequency. When the parameters of poroelastic half-space are larger than those of valley, stresses amplitudes
around the outer boundary are larger than those around the inner boundary. The effects of incidence angle on
stresses and pore pressures patterns with the presence of the valley are also clearly different in Figs. 3-8.

Figs. 9-11 shows the distribution of dynamic stresses concentration and pore pressures concentration
around the inner and the outer boundary of circular-arc alluvial valley for valley thickness r4/r; = 0.75, 0.8,
0.85. As given the parameters of poroelastic half-space and alluvial valley, the dynamics stresses and pore
pressures with the change of valley thickness have clearly regulation. When the parameters of poroelastic half-
pace are larger than those of valley, stresses amplitudes around the outer boundary are larger than those
around the inner boundary. Pore pressures are greatly smaller than stresses. Stresses amplitudes increase with
the increase of thickness of the valley, while pore pressures amplitudes decrease with the increase of thickness

Re(c,") b
(@) --m-- Im(s,) 90 (b)
1.0 120

0.5
0.0
-0.5
-1.0
-1.5
-2.0
2.5
-3.0
-3.5 4
-3.0
25
2.0
-1.5 4
-1.0
-0.5 4
0.0 ]
0.5
1.0

Re(o,")
--m—-Im(c;")

120

0_1,4

270 270

Fig. 3. Distribution of dynamic stresses concentration around the outer boundary of circular-arc alluvial valley (f =0, r4/r; = 0.8):
(a) Re(Kjry) = 0.25 and (b) Re(Kpy) = 1.0.
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Fig. 4. Distribution of dynamic stresses concentration around the inner boundary of circular-arc alluvial valley (f =0, ry/r; = 0.8):
(a) Re(Kjry) = 0.25 and (b) Re(Kjr) = 1.0.
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Fig. 5. Distribution of pore pressures concentration around the outer boundary of circular-arc alluvial valley (f =0, r4/r; = 0.8):
(a) Re(Kjry) = 0.25 and (b) Re(Kpy) = 1.0.

of the valley. When increasing thickness of alluvial valley, stresses amplitudes around the inner and outer
boundary of valley may be decreased, while pore pressures amplitudes may be increased. For engineering, the
main factor of breakage is the greatest dynamics stresses. So we can increase thickness of alluvial valley to
decrease dynamic stresses.

Porosity is one of the important physical parameters of poroelastic half-space. Figs. 12—14 shows the
distribution of dynamic stresses concentration and pore pressures concentration around the inner and outer
boundary of circular-arc alluvial valley under different porosity nj/n; = 0.9, 1.1. The parameters of
poroelastic half-space and alluvial valley are: pi, = pi, = 2750 kg/m?; pir= pur= 1000 kg/m®; p = py =
2.6 x 108Pa; vy = vy = 0.3; oy = oy = 0.999; M; = My = 1.0 x 10® Pa; n=ny=1.0x 1072 Pas. As shown in
Figs. 1214, the effects of variation of porosity on dynamics stresses and pore pressures are very different.
Dynamic stresses amplitudes decrease with the increasing of porosity ny/ny;.
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8. Conclusion

Based on Biot’s theory and complex variable function method, a new approach for solving the scattering of
plane P wave by circular-arc alluvial valley in poroelastic half-space is developed in the paper. The
methodology suggested in this paper is more advantageous than the conventional methods, such as

eigenfunction expansion method, BEM, FEM for solving wave scattering problems.

The result shows that dynamic stresses amplitudes and pore pressures amplitudes are mainly dependent on
angle of incidence, frequency of incident wave, and porosity of soil. The frequency plays an important role in
determining stresses and pore pressures patterns. The physical properties of poroelastic medium and alluvial
valley have large effects on the scattering of plane P wave by circular-arc alluvial valley. When parameters of
poroelastic half-space are greater than those of alluvial valley, dynamic stresses amplitudes increase with
thickness of alluvial valley r4/r; increasing, while pore pressures amplitudes decrease with thickness r4/r;
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Fig. 14. Distribution of pore pressures concentration around the outer boundary of circular-arc alluvial valley with different ny/ny;:
(a) Re(Kjry) = 0.25 and (b) Re(Kpy) = 1.0.

increasing. Dynamic stresses amplitudes decrease with increasing of porosity ny/ny;. The methodology and
analytical solution developed in this paper may analyze the scattering of transient waves by the irregular
topography conditions in a finite half-space.
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Appendix A

Substituting Egs. (21f), (21g), (23f), (23g) into Egs. (25a), (25b) yields

3 2 00 3 o9 3 o)
Z Z Ellcpinxpi” + Z Z Ellcmnxmn + Z Z Z Ellcanxllfn = rllc (k=1,2) (A.1)
p=1 i=1 n=—00 m=1 n=—00 g=1 j=1 n=—o0
where
. n | Z. n—2
Bl =y eyl (1) kG20 () exotcio (A2)
1 1
. n | . n—2
Elyy = aISH;”(kh|zi|)<|Z—f|) Tk HO (k|21 (m) exp(2i0) (A3)

n—2
. Zi .
E\y, = iwhkd HY (kyi|zi)) (ﬁ) exp(2i0) (A.4)
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. n . n—2
el@ 619 .
Eyy, = —ouy HY (kg €19|)<| l(,|> :quHan H(knylr €'0|)<‘ 19|> exp(2i0)

. n . n—2
10 i0
i 1€ .
E12n = —OCIIS )(klls|l’1 €9|)<| 1H|> :uIIkHJHn 2(k113|1"1 eH|)<| 19’> eXp(210)

16 n—2
Ely, = —iuyky, HY 2(k111|7’1€19|)< 10|> xp(2i0)

z\" . n—2 .
Eiyy = —ongHY (ka‘|Z./‘|)<ﬁ> — ik, (kg 177]) <|Z—]|> exp(2i0)
] ]

n n—2
Ely =~ el (2) = ik 1tz (2) expezio
g Zj
n—2
E}3]” = ll“tHkIIan 2(k11z|Z]|)<| |) exp(2i0)
Zj

n n+2
Bl = o H Gy ) K2 HY (k ~2i0
21in — If 4Ly, ( lf|Z’|) |z + Uy If n+2( l/|Zl|) | | CXp( 1 )

n+2
Ely, = i H (kh|z,|>( ) ke M(kmz,o(' l) exp(~2i0)

|il

n+2
E;an llulk%l n+2(klf|zl|)(| |> eXp(—219)

10 19

n+2
ES = oy HO (ke e'OI)( ) uIIkIIan+2(kIIf|r1 e‘”|)< ) exp(—2i0)

eif \" i0 \ "2
i i 1€ .
Eézm = —zme( )(km|rl e 0|)< 19|> anngHHz(kmh’l e 0|)< 10|> exp(—2i0)

olf n+2
Eyiy = ipnkiy H )y (el €1) ( o0 |) exp(—2i6)
z n n+2
Eéljn = —omefql)(knflsz <|ZJ|> ,uuknj n+2(knflz]|) (| |> exp(—2i6)
Y Zj

n z; n+2 .
Eézjn = Oth( )(kmlzjl)( ) - ﬂnkm n+2(kHA|Zj|)(| |) exp(—2i0)
/

|zl
n+2
E§3jn = lﬂIIkIIan+2(kllt|Z/|)(| |> exp(—2i6)
]

H=- alf(q)(” + <p1f) —on,(0) + 9))

a2 L+ o) + ol + 040+ + 9] expio)

1039

(A.5)

(A.6)

(A7)

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)
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1 (i)

r, = —oy(ey + 901 )) — or(0l) + o)
— 4y ;.22 [0} + o1 + o) + o1 — i1 + i) exp(~2i6) (A21)
where
=z =nel (i=j=1) (A.22)
n=rne'+d—d, zi=rné'+d—d, (i=j=2) (A.23)

Xlin = Qin,  X2in = biny  X3in = Ciny, X1tn =din, Xon = €ln, X3 :flns Xljn = Ajn,  X2jn = €jn,  X3jn :fjn

(A.24)
Multiplying both sides of Eq. (A.1) with e and integrating over the interval [—x, n1], we have
3 2 00 3 2 00
Z Z Z kplnxll"’l + Z Z Ekmnxmn + Z Z Z Ekq]nxq]n = V/lc (S = :i:O, :l:l, .. ) (A25)
p=1 i=1 n=—00 m=1 n=—00 g=1 j=1 n=—00
where
1 [T :
Egin=5- / Epype ™ do (A.26)
T —T
1 (" s
Eyn =5- / Epppe 0 d0 (A27)
[ - is0
Ekq}n - %/ Ekq/‘n e " do (A.ZS)
2s 1 i 1 —is0
1= %/ ree " do (A.29)
Likewise, substituting Egs. (21a), (21b), (23a), (23b) into Egs. (25¢) and (25d) yields
3 00 3 00 3 2 00
Z Z Eipinxpi” + Z Z Elzcmnxmn + ZZ Z Eianxan = }’i (k=1,2) (A.30)
p=1 i=1 n=—00 m=1 n=—00 g=1 j=1 n=—o0
where
B}, = kl.f'Hil_)l(kl_f'lz,I)('Z |> (A31)
1
z;
E%zm = klsH,(ql_)l(kls|Zz|)(m> (A.32)
13m =ik H, 1(k1t|Zl|)( ) (A.33)
E}y, = —kueHyY  (kugln el9|)< e19|) (A.34)
E}, = —kuHY (kg em|)< ele|> (A.35)
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E%. = —iky, H® (k i0 |1 e’ "
3w = —iku H, 7 kgl €71) (16|
E2

jn = kH/H ) (kur1z;1) >

- i
E%3jn = —lknzHﬁ,)l(knzIZj

E%zm = —ku,H, 1(kHV|Zj|)< )
EZlm - kIanJrl(klletD( )
E%zll’l - kh n+l(klb|zl|)( )

z; )VH—I
|z

. 1
E§3m = —1k1,H51ll(k1,|z,»|)

2 g i i0
B3y, = —kupH,py (kuylri e®) ( e10|>

(
Gren)

E3y, = ik ), Gendry €) <| ele|>

)
2 i0
E3), = —knH ,,+] (kslry €)

I
E%ljn = —kaqull(kalsz<|ZA|>
j
n+1
E%Z]n_ —kg n+1(k113|21|)<| |)
Zj

n+1
E23jn lkqu,,H(kuAZ/ ); <| |>
Zj

6 1 1 A 1 r
it = =25 101 + ol + ol + ol + i + )]

3= =220 + o1} + i) + of) — i + )]

1041

(A.36)

(A37)

(A.38)

(A.39)

(A.40)

(A.41)

(A.42)

(A.43)

(A.44)

(A.45)

(A.46)

(A.47)

(A.48)

(A.49)

(A.50)

Likewise, multiplying both sides of Eq. (A.30) with e and integrating over the interval [—7, 7], we

have

3 2 [e'9) 3 2 o0
IS EkpmxperZ Z ERXum+ 3 > Y EpuXgn=17 (s=20,%£1..)
= :

p=1 i=1 n= m=1n=—00 g=1 j=1 n=—0c0

(A.51)
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where

y 1 " —is0
Elzc;)in = Z/ Eipm "7 de
E2s _ L/ EZ —1\'0 do

kmn — on | Kkmn ©

1 —1 0
E,%fﬂ.n =5 /_ E,iqm 040

rk — _/ —iS() do

Likewise, substituting Egs. (21¢), (21d), (23c), (23d) into Eqgs. (25¢) and (25f) yields

00 3 00 3 2

32 =)
ZZ Z Eipinxpin+z Z E/3cmnxmn+zz Z Ezq]’nxli]'ﬂ ZV?( (k: 1’2)

p=1 i=l n=—0© m=1 n=—0o0 g=1 j=1 n=—00
where

1 Zj
Ey, = ’711kIfH£,_)1(k1f|Zi|) =4

zi

. 1
E%31‘n = 1a11k1,Hf1_)1(k1r|Zz |)

iy = ik, (ki) <|Z |)

3 @) o (e’ "
Eyy, = —nkusH,” (kuylri €™]) r el

i0

n—1
2 ; rie
B, = —tipkugHY (sl €) <|r1 ei(a|>

: n—1
3 : &) oy ((11€°
Ey,, = —iomknH,” (ki €") i ]
1

n—1
-
E?ljn = ’7111kIIan 1 (eny|z0) |j|>
Zj

E3

13jn = lOC]]]k]][Hn l(kHtlzjl)

n—1
zj
E?Zj]‘l: —NMkusH,~ 1(k113|Z/)< )
|z

< )n—l

12

1
E3y, = nllklfH;ll(kIﬂZjl)( )
E},. = npkiHY) (kis)z:
22in = N12Kls n+1( IS|Zz|) | |

(A.52)

(A.53)

(A.54)

(A.55)

(A.56)

(A.57)

(A.58)

(A.59)

(A.60)

(A.61)

(A.62)

(A.63)

(A.64)

(A.65)

(A.66)

(A.67)
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n+1
E3, = 1oqlk1,Hn+l(k1,|z,|)(| |> (A.68)
l
B3\, = =k HyY Gl éel)( elg|) (A.69)
E%2n = —17112k]]‘yH§12_~)_1(k115|1’1 ei9|)<|r 6‘0|> (A.70)
B3, =tk HY), (kalry ei0|)< ele|> (A.71)
Egljn ﬂrrlkII/HnH(knj|Z/|)(| |> (A.72)
Zj
| 7. n+1
Egzjn = _”IIZkIIsH,(qul(kIIﬂZjD (ﬁ) (A.73)
j
Z‘ n+1
Eig_,n 106111k111H,1+1(k11r|Z]|)<| |> (A.74)
Zj
0
r o= —25[1111(@%}) + o) + (0 + o) + o (W + W) (A.75)
= 2.2 o) + o)+ ol + o) — i () + W) (A.76)
Likewise, multiplying both sides of Eq. (A.56) with e *? and integrating over the interval [—=, 7], we have
3 2 00 3 2 00
SN ER v +Z Z Ep X+ > > > Epxge =1 (s=£0,%1..) (A77)
p=1 i=1 n=—00 m=1 n=—00 q=1 j=1 n=—00
where
1 (" :
Eipin =5~ / ERpne ' do (A.78)
—T
1 (" :
Eon = 5= / E} e do (A.79)
‘ 1 (" y
Elyn =5 / Ejye ' d0 (A.80)
-7
s 1 " —is
ry Zﬂ/_n rpe ' do (A.81)

Substituting Eqgs. (21f), (21g) into Egs. (26a), (26b), one has

3 00

ZZ Z Ekpmxpm = i’i (k=1,2) (A.82)

p=1 i=1 n=—00

where

n—2
Ellm - OC]fH( )(k1f|21|)( ) + :qu Hn 2(k1f|Zz|)<| |> exp(219) (A83)

|zil
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= \" | . n—2

EM=mﬂWmm(ﬁ>+mﬁmme%ﬁ) exp(2i6)
4 i
n—=2
Ely, = ki, H\ (ki z) <| |) exp(2i6)
l

n n+2

4 (M Zi 2 i .
E3 = oupH,P (kip|zil) E +:“Ik1f n+2(k1/|21|) | | exp(—2i0)

n+2
E§2m = OCISH( )(kIX|Zl|)<| ) + :u'Ik%v n+2(kls|zl|)(| |> exp(—210)

n+2
E13uy —ipk n+2(k1z|Z,|)( > exp(—2i0)

Xlin = Win,  X2in = bin,  X3in = Cin

zi=ne+dy—d (i=1)

zi=rel (i=2)
Likewise, multiplying both sides of Eq. (A.82) with e’ and integrating over the interval [—
have
5 2 00
SN Eb i =r (ki=1,2) (s==£0,£1,42,...)
p=1 i=1 n=—00
where
1 o
kpm - 27‘[/ kpm w0 do
1
=5 / rte 0 do

Substituting Eq. (21h) into Eq. (27) yields

2

o0
DD D By =

p=1 i=1 n=—00

where

E?m - Alfk H( )(k[f|Zl|)< |)

Zl n
Egm = Al‘k%sH(l)(klx|Zi|) <|Z|>
i

}’5:0

(A.84)

(A.85)

(A.86)

(A.87)

(A.88)

(A.89)
(A.90)
(A.91)
(A.92)

(A.93)

T, 7|, we

(A.94)

(A.95)

(A.96)

(A.97)

(A.98)

(A.99)

(A.100)
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Likewise, multiplying both sides of Eq. (A.97) with e and integrating over the interval [—
have
2 2 00
SN Enxpn=r" (s=%0,%£1,£2,..)
p=1 i=1 n=—00
where

—iSH
pm Dy / pzn do

1 .
Ss __ —1sH
= de
: 2n n

oY = o} + 0\

9 = o + 03

(t) \|I(S) + \l/(é)
Likewise, substituting Eq. (21¢), (21d) into Eq. (28) yields
3 2 00
S ESn=r" (=12
p=1 i=1 n=—c0
where

6 ’hlklf 1) i . ’711klf (1) a .
El, =—— 5 H, 1(klf|21|) exp(if) — 7 H, 1(klf|Zz|) | exp(—ib)

k z\"! . k z\"! .
£, =" 1D () (E) exp(i0) — "2 ), (k) <E) exp(-i0)
l 1

6 _ lonky ) i . loiky ) #tl ]
By =—5—H, 1(k1t|21|) exp(if) + —— 71, 1(kltlz,l) | exp(—if)
r6 =0
Likewise, multiplying both sides of Eq. (A.107) with e *? and integrating over the interval [—
have
3 00
ZZ Z pm)‘awn—r6 (S=Z|:0,2|:1,:|:2,...)
p=1 i=l n=—00
where

6s 7is()
Epm - _/ pm do

1 .

65 __ 71‘\'6

= do
: )

Substituting Eqgs. (23f), (23g) into Egs. (29a), (29b) one obtains

2 00

3 o) 3
Z Z E,i,,mjxm,,juzz Z ERXgn =13 k=12, j=3,4

m=1 n=—00 g=1 i=1 n=—00

1045

7, 7|, We

(A.101)

(A.102)

(A.103)

(A.104)
(A.105)

(A.106)

(A.107)

(A.108)

(A.109)

(A.110)

(A.111)

7, T|, we

(A.112)

(A.113)

(A.114)

(A.115)
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where
z\" n—2
ﬁw=mw#%wwwg)+m&v 2®mm(4) exp(2if)
j zl
Z: 7. n—2
E§2nj = OC”SHS,Z)(k”AZ‘/D(|ZJ-|> + gk HY i 2(knslz‘,-l) <|z_j|> exp(2i6)
j
n—2
E§3n] llullklltHn 2(kHI|ZJ|)<| |) exp(2i0)
Zj
i n n—2
E} )y = oy Y (kIIf|Zz/|)< ) + Muku/ e 2(knf|Zy|)< |> exp(2i0)
Zij
n—2
E12mj = OCIIvH (kIIvlzt/D(Z |> +,u11k115 n— 2(k11v|21/|)<| |> exp(2i6)
i Zij
n—2
Eflg3m/ WHkm e z(kHt|le|)<| |> exp(2i6)
Zjj
. Z‘ n+2
Eglnj = omeEIZ)(kuflzjl)<|Z{ ) +,unkaHn+2(k1f|z]|)<| |> exp(—2i0)
A/ /
n n+2
E22n/ = oy, HY (kmlzjl)(| |> —Hmkm n+2(k1h|z]|)<| I> exp(—2i0)
Z Zj
Z' n+2
Egzm' lﬂnknz n+z(k11rlzjl)<| |) exp(—2i0)
Zj
n n+2
ES = oy HY (kIIf|Zy|)(| |> +ﬂllk%Ian+2(kIlf|Zz]|)(| |> exp(—2i0)
Zjj Zjj
n+2
E%Zzn]_aHSHn (klls|2y|)(| |) +,ullkm n+2(klls|zy|)(| |> exp(—2i0)
Zij Zij
n+2
E§3inj Wnknz n+2(kllt|21/|)<| |) exp(—2i0)
Zij
iy =
3 =0
P, =0
where

Zj:Z,-j=Y3€i9+d2—d1 (l:l,]=3)
Zp=ne’ (i=2,j=3)

zj=zU=r4eiH (l:l’]:4)

(A.116)

(A.117)

(A.118)

(A.119)

(A.120)

(A.121)

(A.122)

(A.123)

(A.124)

(A.125)

(A.126)

(A.127)

(A.128)
(A.129)

(A.130)

(A.131)
(A.132)

(A.133)
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j=rel vd—dy (i=2,j=4)

Xlin = Aip, X2in = bin, X3in = Cin, X1p = dln, Xon = €ln, X3p =f1n: Xlin = dina X2in = €ins X3in Zf[n

Likewise, multiplying both sides of Eq. (A.115) with ¢ ¢

2 00

3 00 3
8s 8s _ .8
§ § Ekm,y‘xmn + § § § Ekq,‘njxqin = Tj»

m=1 n=—00 g=1 i=1 n=—00

k=12 j=3,4

where

| " .
8 8 —is0
Ekfnn] Tn/ Ekmnje *7do
1 [" .
8 8 —is0
Ejging = 5, [ iy d0

1 /" .
8 8 —ish
kfs_27r/, Tij © - do

Substituting Eq. (23h) into Eq. (30) one obtains

3 00 3 2 00
Z Z Eijxm” + Z Z Z Eqm]xqm = ] = 3,4
m=1n=—00 g=1 i=1 n=—c0
where
n
-
E?n./ = _AIIfk%IfH,(qz)(kllflz_/l)(|Z{|)
j
z
B3y = —Augk, HO (k] )<|z_]|>
j
z;
Y,y = —Augkiy HL) (kuf|2u|)<|zj|)
i
Z,
Egm] — Ak H O (gl zi1) <|ZU|>
ij
9 _
ro= 0
Likewise, multiplying both sides of Eq. (A.140) with e % and integrating over the interval [—7,
obtains
3 00 3 2 00
Z Z Ezj”]xmn + Z Z Z Eqmjqun = }" ] = 3,4
m=1n=-00 g=1 i=1 n=—00
where

s 1 —is0
E?ﬁnj = Z/ Ezvy *rdo

1
qm/ o / qinj ©

7150 do

v
= e 040
Y

1047

(A.134)

(A.135)

and integrating over the interval [—7, n], we have

(A.136)

(A.137)

(A.138)

(A.139)

(A.140)

(A.141)

(A.142)

(A.143)

(A.144)

(A.145)

7], one

(A.146)

(A.147)

(A.148)

(A.149)
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Substituting Egs. (23c), (23d) into Eq. (31) one obtains

3 00 3 2 00
S Bt 33 Bl =l =34
m=1 n=—o0 q=1 i=1 n=—00
where
E0 _ nmkny H(z) k Zj " . mukuy 0 ) Zj .
nj = 1 (knrlziD) exp(if) — H,7 (kuylz;l) CXP(—IQ)
2 |ZJ| 2 |Z]|
El0 _ Nk H(2) (k Zj i . 771[2k11s 0)) zZj .
2nj = 1 HJ'Zj ) exp(le) - H,1+1(klls|zj ) T CXp(—l@)
2 |Z/| 2 |Z/|
10 iogni ke H(z) k z\"! . loqrikny L0 zj :
= H,” (kwlziD | exp(i0) — ——H, ) (kuz D | = exp(—i0)
2 | j| 2 |Z]|
—1
Nk Zjj " . Mk .
Efjy =15 AW 5D eyl )(| |) exp(if) — “2 1Pl H(l)l(knflz,]|)(|z |> exp(—if)
Zjj ij
EL0 _”IszllsH(l) K Zij " . ”Inzklls (1) Zijj :
2jnj = 1( Ils|th|) €Xp(19) H 1(klls|21/|) exp(—19)
2 |le| 2 |le|
i k nl ) o k z .
EY, = — H(Dl(knrlzl/D( ) exp(if) — — 5 H(l)l(km|2u|)( ”) exp(—if)
rjO =0
Likewise, multiplying both sides of Eq. (A.150) with e’ and integrating over the interval [—
obtains
3 00 3 2 00
SN Emxn+ Y Y Efixun =" (=34 (s==£0,£1,42,..)
m=1n=—00 g=1 i=1 n=—00
where
s 1 73'9
E&lvgn/ = E/ Erlv?n/ *do
El()s _ L ElO —is0 do
aij — op | qinj ©
05 — i i 10 6=is0 4p
J an)
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